JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 4, November 2012

THE STRONG M_{α} -INTEGRAL OF BANACH-VALUED FUNCTIONS

JAE MYUNG PARK^{*}, BYUNG MOO KIM^{**}, YOUNG KUK KIM^{***}, AND HOE KYOUNG LEE^{****}

ABSTRACT. In this paper, we define the strong M_{α} -integral of Banachvalued functions and investigate some properties of the strong M_{α} integral.

1. Introduction and preliminaries

It is well-known [12] that a function $f : [a, b] \to X$ is M_{α} -integrable on [a, b] if and only if there exists an ACG_{α} function F such that F' = falmost everywhere on [a, b].

In this paper, we define the strong M_{α} -integral of Banach-valued functions and prove that a Banach-valued function f is strongly M_{α} -integrable on [a, b] if and only if there exists a strong AC_{α} function F such that F' = f almost everywhere on [a, b].

Throughout this paper, $I_0 = [a, b]$ is a compact interval in R and X is a Banach space. Let D be a finite collection of interval-point pairs $\{(\xi_i, I_i)\}_{i=1}^n$, where $\{I_i\}_{i=1}^n$ are non-overlapping subintervals of I_0 , and let δ be a positive function on I_0 , i.e. $\delta : I_0 \to R^+$. We say that $D = \{(\xi_i, I_i)\}_{i=1}^n$ is

(1) a partial tagged partition of I_0 if $\bigcup_{i=1}^n I_i \subset I_0$,

(2) a tagged partition of I_0 if $\bigcup_{i=1}^n I_i = I_0$,

(3) a δ -fine McShane partition of I_0 if $I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ and $\xi_i \in I_i$ for all i = 1, 2, ..., n,

Received September 26, 2012; Accepted October 10, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39.

Key words and phrases: strong M_{α} -integral, strong AC_{α} function.

Correspondence should be addressed to Byung Moo Kim, bmkim6@hanmail.net. This research was supported by a grant from the Academic Research Program of Korea National University of Transportation in 2012.

764 Jae Myung Park, Byung Moo Kim, Young Kuk Kim, and Hoe Kyoung Lee

(4) a δ -fine M_{α} -partition of I_0 for a constant $\alpha > 0$ if it is a δ -fine McShane partition of I_0 and satisfying the

$$\sum_{i=1}^{n} dist(I_i, \xi_i) < \alpha,$$

where $dist(I_i, \xi_i) = inf\{|t - \xi_i| : t \in \xi_i\},\$

(5) a δ -fine Henstock partition of I_0 if $\xi_i \in I_i \subset (\xi_i - \delta(\xi_i), \xi_i + \delta(\xi_i))$ for all i = 1, 2, ..., n.

2. The strong M_{α} -integral

The strong Henstock integral and strong McShane integral are defined in [13].

DEFINITION 2.1. [14] A function $f : I_0 \to X$ is strongly Henstock integrable on I_0 if there is an additive function F on I_0 such that for every $\epsilon > 0$ there exists a gauge δ on I_0 such that

$$\sum_{i=1}^{n} ||f(t_i)\mu(I_i) - F(I_i)|| < \epsilon$$

for every δ -fine Henstock partition $\{(t_i, I_i), i = 1, 2, ..., n\}$ of I_0 .

DEFINITION 2.2. [14] A function $f : I_0 \to X$ is strongly McShane integrable on I_0 if there is an additive function F on I_0 such that for every $\epsilon > 0$ there exists a gauge δ on I_0 such that

$$\sum_{i=1}^{n} ||f(t_i)\mu(I_i) - F(I_i)|| < \epsilon$$

for every δ -fine McShane partition $\{(t_i, I_i), i = 1, 2, ..., n\}$ of I_0 .

Now we define the strong M_{α} -integral.

DEFINITION 2.3. A function $f : I_0 \to X$ is strongly M_{α} -integrable on I_0 if there is an additive function F on I_0 such that for every $\epsilon > 0$ there exists a gauge δ on I_0 such that

$$\sum_{i=1}^{n} ||f(t_i)\mu(I_i) - F(I_i)|| < \epsilon$$

for every δ -fine M_{α} -partition $\{(t_i, I_i), i = 1, 2, ..., n\}$ of I_0 .

Since every Henstock partition is an M_{α} -partition and every M_{α} -partition is a McShane partition, we can easily get the following theorem.

THEOREM 2.4. Let $f: I_0 \to X$ be a function.

(a) If f is strongly McShane integrable on I_0 , then f is strongly M_{α} -integrable on I_0 .

(b) If f is strongly M_{α} -integrable on I_0 , then f is strongly Henstockintegrable on I_0 .

THEOREM 2.5. If $f: I_0 \to X$ is strongly M_{α} -integrable on I_0 with the primitive F, then f is M_{α} -integrable on I_0 and $(M_{\alpha}) \int_{I_0} f = F(I_0)$.

Proof. The result follows easily from the inequality

$$\left\| \sum_{i=1}^{n} f(t_i)\mu(I_i) - F(I_0) \right\| = \left\| \sum_{i=1}^{n} [f(t_i)\mu(I_i) - F(I_i)] \right\|$$
$$\leq \sum_{i=1}^{n} \left\| f(t_i)\mu(I_i) - F(I_i) \right\|$$

for every M_{α} -partition $\{(t_i, I_i), i = 1, 2, ..., n\}$ of I_0 .

DEFINITION 2.6. A function $F: I_0 \to X$ is strongly differentiable at $c \in I_0$ if there is a $w \in X$ such that for every $\epsilon > 0$ there exists $\eta > 0$ such that

$$\left|\left|\frac{F(y) - F(x)}{y - x} - w\right|\right| < \epsilon$$

for every interval $[x, y] \subset (c - \eta, c + \eta) \cap I_0$. We denote $w = F'_{st}(c)$ the strong derivative of F at c.

THEOREM 2.7. If F is strongly differentiable on I_0 , then F'_{st} is strongly M_{α} -integrable on I_0 and $\int_{I_0} F'_{st} = F(I_0)$.

Proof. Let $\epsilon > 0$. For each $x \in I_0$, use the strong differentiability at x to choose $\delta(x) > 0$ so that $u, v \in I_0 \cap (x - \delta(x), x + \delta(x))$ implies $||F(v) - F(u) - F'_{st}(x)(v - u)|| < \epsilon |v - u|$.

Suppose that $D = (x_i, [u_i, v_i])$ is a δ -fine M_{α} -partition of I_0 . Then $\sum_i \left| \left| F'_{st}(x_i)(v_i - u_i) - [F(v_i) - F(u_i)] \right| \right| < \sum_i \epsilon(v_i - u_i) = \epsilon \mu(I_0).$ Hence, F'_{st} is strongly M_{α} -integrable on I_0 and

$$ce, T_{st}$$
 is strongly m_{α} -integrable on T_0 and

$$\int_{I_0} F'_{st} = F(I_0).$$

766 Jae Myung Park, Byung Moo Kim, Young Kuk Kim, and Hoe Kyoung Lee

DEFINITION 2.8. Let $F: I_0 \to X$ and let E be a subset of I_0 . Then F is strongly AC_{α} on E if for each $\epsilon > 0$ there is a constant $\eta > 0$ and a gauge $\delta: I_0 \to R^+$ such that

$$\sum_{i} \left| \left| F(I_i) \right| \right| < \epsilon$$

for every δ -fine M_{α} -partial partition $D = \{(\xi_i, I_i)\}$ of I_0 satisfying $\xi_i \in E$ and $\sum_i \mu(I_i) < \eta$.

We can show that a function $f: I_0 \to X$ is strongly M_{α} -integrable on I_0 if and only if there exists a strong AC_{α} function F such that F' = f almost everywhere on I_0 .

THEOREM 2.9. If a function $f : I_0 \to X$ is strongly M_{α} -integrable on I_0 with the primitive F, then F is strongly AC_{α} on I_0 and F' = falmost everywhere on I_0 .

Proof. Suppose that f is strongly M_{α} -integrable on I_0 with the primitive F. Since f is strongly Henstock integrable on I_0 , F'(t) = f(t) almost everywhere by [14, Theorem 7.4.2].

To show that F is strongly AC_{α} on I_0 , let $\epsilon > 0$. Since f is strongly M_{α} -integrable on I_0 , there exists a gauge δ on I_0 such that

$$\sum_{i=1}^{q} \left| \left| f(t_i)(v_i - u_i) - [F(v_i) - F(u_i)] \right| \right| < \epsilon$$

for every δ -fine M_{α} -partition $\{(t_i, [u_i, v_i]), i = 1, 2, ..., q\}$ of I_0 . By [14, Theorem 7.4.3], f is continuous on I_0 . Hence, there exists a real number K > 0 such that $||f(t)|| \leq K$ for all $t \in I_0$. Let $\eta = \frac{\epsilon}{K+1}$. Suppoe that $D = \{(\xi_i, [\alpha_j, \beta_j]), j = 1, 2, ..., p\}$ is a δ -fine M_{α} -partition of I_0 with $\sum_{j=1}^{p} (\beta_j - \alpha_j) < \eta$. Let $\beta = \alpha - \sum_{j=1}^{p} dist(\xi_i, [\alpha_j, \beta_j])$. Then the closure $\overline{I_0 - \bigcup_{j=1}^{p} [\alpha_j, \beta_j]}$ cosists of a finite number of disjoint closed subintervals $I_k \subset I_0$ $(1 \leq k \leq n)$.

Taking any δ -fine $M_{\underline{\beta}}$ -partition D_k of I_k , $D \cup [\cup_{k=1}^n D_k] = \{(\tau_l, [c_l, d_l]), l = 1, 2, ..., p + n\}$ is a δ -fine M_{α} -partition of I_0 . Then

$$\sum_{j=1}^{p} \left| \left| F(\beta_{j}) - F(\alpha_{j}) - f(\xi_{j})(\beta_{j} - \alpha_{j}) \right| \right|$$

$$\leq \sum_{l=1}^{p+n} \left| \left| F(d_{l}) - F(c_{l}) - f(\tau_{l})(d_{l} - c_{l}) \right| \right| < \epsilon$$

and

$$\sum_{j=1}^{p} \left| \left| F(\beta_j) - F(\alpha_j) \right| \right|$$

$$\leq \sum_{j=1}^{p} \left| \left| F(\beta_j) - F(\alpha_j) - f(\xi_j)(\beta_j - \alpha_j) \right| \right| + \sum_{j=1}^{p} \left| \left| f(\xi_j) \right| \right| (\beta_j - \alpha_j)$$

$$\leq \epsilon + K \sum_{j=1}^{p} (\beta_j - \alpha_j)$$

$$< \epsilon + K \eta$$

$$< \epsilon + \epsilon = 2\epsilon.$$

Hence, F is strongly AC_{α} on I_0 .

THEOREM 2.10. Let $F : I_0 \to X$ is strongly AC_{α} on I_0 and F' = f almost everywhere on I_0 , then f is strongly M_{α} -integrable on I_0 .

Proof. Suppose that F is strongly AC_{α} on I_0 and F' = f almost everywhere on I_0 . Let E be the set of points t at which $F'(t) \neq f(t)$. Then $\mu(E) = 0$.

For each $t \in I_0 - E$, given $\epsilon > 0$ there is a $\delta(t) > 0$ such that whenever $t \in [u, v] \subset (t - \delta(t), t + \delta(t))$ we have

$$||F([u,v]) - f(t)(v-u)|| < \epsilon(v-u).$$

For each $j \in N$, let $E_j = \{t \in E : j - 1 \le ||f(t)|| < j\}$. Then $\{E_j\}$ is a collection of pairwise disjoint measurable sets and $\bigcup_{j=1}^{\infty} E_j = E$. Since F is strongly AC_{α} on I_0 , F is also strongly AC_{α} on E_j . Hence, there is a $\eta_j < \frac{\epsilon 2^{-j}}{j}$ such that for any δ -fine M_{α} -partial partition $\{(t_k, I_k)\}$ of I_0 satisfying $t_k \in E_j$ and $\sum_k \mu(I_k) < \eta_j$, we have

$$\sum_k ||F(I_k)|| < \epsilon 2^{-j}$$

For each $j \in N$, choose an open set G_j such that $\mu(G_j) < \eta_j$ and $E_j \subset G_j$.

767

768 Jae Myung Park, Byung Moo Kim, Young Kuk Kim, and Hoe Kyoung Lee

Now for $t \in E_j$ (j = 1, 2, ...), put $\delta(t) > 0$ such that $(t - \delta(t), t + \delta(t)) \subset G_j$. Taking any δ -fine M_α -partition $\{t_l, [u_l, v_l])\}$ of I_0 , we have $\sum_l ||f(t_l)(v_l - u_l) - F([u_l, v_l])|| \\ = \sum_{t_l \notin E} ||f(t_l)(v_l - u_l) - F([u_l, v_l])|| + \sum_{t_l \in E} ||f(t_l)(v_l - u_l) - F([u_l, v_l])|| \\ \leq \sum_j \sum_{t_l \notin E_j} ||f(t_l)(v_l - u_l) - F([u_l, v_l])|| + \sum_j \sum_{t_l \in E_j} ||f(t_l)||(v_l - u_l) \\ + \sum_j \sum_{t_l \in E_j} ||F([u_l, v_l])|| \\ < \epsilon \mu(I_0) + \sum_j j\eta_j + \sum_j \epsilon 2^{-j} \\ < \epsilon \mu(I_0) + 2\epsilon.$

This shows that f is strongly M_{α} -integrable on I_0 and $\int_{I_0} f = F(I_0)$. \Box

References

- B. Bongiorno, Un nvovo interale il problema dell primitive, Le Matematiche, 51 (1996), no. 2, 299-313.
- [2] B. Bongiorno, L. Di Piazza, and D. Preiss, A constructive minimal integral which includes Lebesque integrable functions and derivatives, J. London Math. Soc. (2) 62 (2000), no. 1, 117-126.
- [3] A. M. Bruckner, R. J. Fleissner, and J. Fordan, The minimal integral which includeds Lebesque integrable functions and derivatives, Collq. Mat. 50 (1986), 289-293.
- [4] S. J. Chao, B. S. Lee, G. M. Lee, and D. S. Kim, *Denjoy-type integrals of Banach-valued functions*, Comm. Korean. Math. Soc. **13** (1998), no. 2, 307-316.
- [5] D. H. Fremlin The Henstock and McShane integrals of vector-valued functions, Illinois J. Math. 38 (1994), 471-479.
- [6] D. H. Fremlin The McShane, PU and Henstock integrals of Banach valued functions, Cze. J. Math. 52 (127) (2002), 609-633.
- [7] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127-147.
- [8] R. A. Gordon, The Integrals of Lebegue, Denjoy, Perron, and Henstock, Graduate Studies in Math.4 Amer.Math.Soc. (1994).
- [9] R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- [10] R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, 1991.

- [11] J. M. Park and D. H. Lee, The Denjoy extension of the Riemann and McShane integrals, Cze J. Math. 50 (2000), no. 125, 615-625.
- [12] J. M. Park, B. M. Kim, Y. K. Kim and H. K. Lee, The M_{α} -integral of Banachvalued functions, Journal of the Chungcheong Math. Soc. **25** (2012), no. 1, 115-125.
- [13] L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste Vol. XXXIV (2002), 143-153
- [14] S. Schwabik and Guoju Ye, Topics in Banach space integration, World Scientific, 2005.
- [15] L. P. Yee, Lanzhou Lectures on Henstock Integration, World Scientific, Singapore, 1989.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Chungju National University Chungju 383-870, Republic of Korea *E-mail*: bmkim6@hanmail.net

Department of Mathematics Education Seowon University Cheongju 361-742, Republic of Korea *E-mail*: ykkim@dragon.seowon.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: ghlrud98@nate.com